Global IPv6 Summit in Japan 2002

"Outlooks on IPv6 Deployment"

Mobile Packet Network and its Evolution

19 December 2002

Dr. Fumio Watanabe

General Manager, Radio Access Network Department

au Engineering Division KDDI Corporation

Version 2, 2002/12/9

Contents

- 1. Commercial Mobile Packet Network "PacketOne" network with CDMA radio access network
- 2. Evolution towards ALL-IP Network - 3GPPs Architecture -
- 3. Mobile related Research Activities on IPv6 by KDDI
- 4. KDDI Vision of IPv6

1. Commercial Mobile Packet Network

"PacketOne" network with CDMA radio access network

KDDI mobile data network

Services of "PacketOne" network

- EZweb Mobile internet access (WAP, e-mail, GPS...)
- CPA / ISP Intranet / Internet access (PC/PDA)

Features of "PacketOne" network

Packet Radio Access

- 95B 64Kbps, 14.4Kbps (down/up stream)
- 1X 144Kbps, 64Kbps (down/up stream)
- EV-DO 2.4Mbps, 153Kbps (down/up stream)(to be provided 2003)

Seamless Mobility Support

- Continuous data communication while in movement
- Continuous data communication through 95B, 1x, and EV-DO RANs

■ IP communication

- using IP protocol from Mobile Node to Server

Seamless coverage area and Seamless mobility

"PacketOne" Network configuration

IP mobility support

- In PacketOne network, continuous data communications are supported while in movement.
- In case of mobile node H/O, MN and PDSN establish a new ppp link. HA and PDSN make a new mobile IP tunnel.
- To provide the continuity of IP communication, the same IP address must be assigned to MN before H/O. KDDI's network sports two IP address assign methods.

Mobile Node IP address assignment

Two types of IP address assignment methods are available.

- 1. Carrier assign type
 - IP address is assigned by KDDI dynamically from pooled addresses when mobile node connect to 'PacketOne' network.
 - In case of MN H/O, session management function assign the same IP address before H/O.
- 2. User assign type
 - IP address is assigned by user's home radius server.
 - Each MN assigned the same its own IP address every time connecting to PacketOne network.
 - 'EZweb' service uses this type.

2. Evolution towards ALL-IP Network

- 3GPPs Architecture -

3GPP: 3rd Generation Partnership Project3GPP2: 3rd Generation Partnership Project 2

Oau

Conventional Mobile Networks

3GPP ALL IP architecture model

3GPP2 ALL IP architecture model

3. Mobile related Research Activities on IPv6 by KDDI

Mobile IPv6 Test bed

- Verification of Mobile IPv6 based cellular network
- PC-based implementation of HA, AAA, AGW and PCF
- Intra-AGW and Inter-AGW handoff support

Mobile IPv4/v6 Co-operation

- Efficient mobility management by Mobile IP cellular backbone
- Co-operation of Mobile IPv4 and Mobile IPv6 protocols
- Support of IPv6 home network access (ISP, enterprise etc.)
- Support of IPv6, IPv4 and IPv4/v6 dual stack mobile nodes

IPv6 Remote Access Field Trial from **QUINET**

- Intra-Site Automatic Tunnel Addressing Protocol
- open to au.net users (KDDI's mobile Internet service)
- no registration required
- IPv6 free of charge (access charge for au.net required)

Efficient Macro/Micro Motility

- Mobility between Heterogeneous Mobile Networks (Macro Mobility)
- Hierarchical Mobile IP / L2 Assisted Fast Handoff (Micro Mobility)
- Coordination of Authentication and Mobility Management
- Preservation of Address / Session / QoS Context

4. KDDI Vision of IPv6

IPv6 Network to support user demands

Consumer Demands Home Access from Outside

Motivation:

Enterprise Demands

probe

push

Home network appliances will be available by 2003. (use of IPv6 necessary to solve address shortage problems)

Solution:

IPv6/IPv4 dual-stack broadband (ADSL/FTTH/CATV) service IPv6 access from browser phones via IPv4/v6 translator Native IPv6 access from mobile/PHS terminals

Probe car Info (ITS)

Push information to sales representatives outside

Motivation:

needs to access mobile terminals directly

Solution:

IP push by static IPv6 address IPv6 push to mobile terminals (via IPv6 gateway) Native IPv6 access to mobile/PHS terminals

KDDI IPv6 Commercial Service

- IPv6 over IPv4 Tunneling Service (Planned FY2002)
- IPv6 Native Access Service (Started Nov. 2002)

KDDI's Ubiquitous Networking Vision

Key Technologies:

- (1) IPv6 enabled mobile network (realization technology may vary...)
- (2) IPv4-IPv6 interworking (for smooth migration of v4 contents)
- (3) Mobile IPv6 technology (for "true" ubiquitous networking...)

Thank You

www.kddi.com www.au.kddi.com www.dion.ne.jp

