

WIDE Project /アラクサラネットワークス(株) 鈴木伸介 <suz@kame.net>

Abstract

- DNS
 - AAAA Queryに対する異常応答
 - アドレスファミリー未指定時のA/AAAAQuery順序
 - DNSサーバアドレス検出
- **■** まとめ

AAAA Queryに対する異常応答

 AAAA Queryにより異常な応答をするDNSサーバがあると、 AAAA Queryを行ったときのタイムアウト待ちにより、通信遅延 が発生 (RFC4074)

IPv6で問い合わせたとき限定の症状	*BSDでの対応
Queryが無視される	A/AAAA Queryの順番を細工
エラーメッセージが返って〈る (ホスト名 不在=NXDOMAIN)	(抜本解ではないが)
Lame Delegationになる	
エラーメッセージが返って〈る (「ホスト名 不在」以外)	エラーメッセージをトリガーに次の アクション (アプリケーション依存)
壊れたrecordが返ってくる	壊れたrecordを廃棄

アドレスファミリー未指定時の A/AAAA Query順序の工夫

- 一般的にはアプリケーション依存
 - 普通は*BSD付属のライブラリの実装依存

OS	Query順序
NetBSD, OpenBSD, FreeBSD (~5.3)	AAAA A
FreeBSD (5.4~)	A AAAA
KAME SNAP	非link-local IPv6アドレスの有 無で順序を変える あり: AAAA A なし: A AAAA

A/AAAA Query順序の調整だけでは回避しきれないケース

- 誰かがAAAA Queryする限り、「ホスト名不在」エラーには対応 不能
 - 端末がA Query, AAAA Queryを送信
 - A Queryにより、IPv4アドレスを学習し通信 (OK)
 - AAAA Queryにより、キャッシュDNSサーバに「ホスト名不在」による negative cache生成
 - 以降キャッシュDNSサーバにA Queryしても、IPv4アドレスを学習できない (NG)

- AAAA Queryを行う限り「答えのないAAAA Queryのタイムアウト待ち」は避けられない
 - KAME SNAPでは、A Queryの応答時間から適当なタイムアウト値を推測し、タイムアウト時間を必要最小限にしている。
- いずれのケースも端末側ではどうしようもない
 - AAAA Queryに異常応答をするDNSサーバの修正が必須
 - 駄目な場合は、アプリケーション毎の対応が不可避 (e.g. mozilla)

DNSサーバアドレス検出

- 各配布方法への対応状況
 - RA配布: 未対応
 - DHCPv6配布: 対応済 (WIDE-DHCPv6)
 - Well-known Anycast address: 対応済 (手設定)
- 根本的な問題
 - どれが標準?
 - IETFでも標準化作業が頓挫...
 - 仮に標準が決まったとして
 - DNSサーバのIPv4アドレス,IPv6アドレスがあるときどちらを 優先すべきか?

DNSサーバのIPv4/IPv6アドレス

- IPv4/v6 Dual-Stack化により顕在化
 - DNSサーバアドレスをDHCPv4,v6両方で学習
 - C.f. 類似問題
 - DNSサーチパスをDHCPv4,v6両方で学習
 - Policy Tableを複数の上流ISPから学習
 - Default Routerを複数の隣接ルータから学習
- 想定される問題
 - Queryの回数が無駄に増える
 - 「なりずましDNSサーバ」への誘導に悪用することも可能

*BSDでのDNSサーバの IPv4/IPv6アドレスの優先度

- 通常はIPv4アドレスだけ使用
 - OS付属のDHCPv4 clientでDNS情報取得
 - DHCPv6クライアント(WIDE-DHCPv6)も、デフォルトでは 取得したDNS情報を端末に反映しない
 - 必要な人だけ、DHCPv6 clientで取得した情報を /etc/resolv.conf へ反映するよう設定
- 実用上はこれで特に問題ないでしょう

- DNS関連の問題は以下の2つにより対処
 - 壊れたメッセージを廃棄
 - A/AAAA Queryの順序を工夫している
 - が端末側の対応には限界がある サーバ側の対応を切に望みます
- DNSサーバアドレス検出
 - 実用上はDHCPv4のみで十分

Thanks!

まとめ

- DNS関連の問題は以下の2つにより対処
 - 壊れたメッセージを廃棄
 - A/AAAA Queryの順序を工夫している
 - が端末側の対応には限界がある サーバ側の対応を切に望みます
- DNSサーバアドレス検出
 - 実用上はDHCPv4のみで十分
- Source Address Selection
 - 一部実装済
 - 動的Source Address Selection Policyは、複雑な割に有効な局面が 少ない感がある
- Default Gateway Selection
 - Router-Preferenceは実装済
 - More-Specific Route optionは未実装だが、受信のみRIPngで十分

SWG指摘の他のネタに対するコ メント

Source Address Selection

- RFC3484実装状況
 - longest-match rule = 全ての*BSDで実装済
 - Policy Table = 一部の*BSDで実装済
 - FreeBSD: 5.2~
 - NetBSD: まだ (KAME-SNAPでは実装済)
 - OpenBSD: まだ (KAME-SNAPでは実装済)
 - ただしいずれも手動設定 (ip6addrctl)で、DHCPv6などと連動した自動設定は未サポート

- Policy Table自動設定が未サポートな背景
 - 標準化がまだ
 - 汎用的なPolicy Table自動設定は非常に難しい
 - IPv6マルチホーム問題そのもの
 - 一部の場合(e.g. 閉域網とInternetの同時使用)には簡単かつ効果的
 - 上の効果的なパターンは「Unique Local Address (RFC4193) とlongest-match ruleの併用」でも対応可
 - Policy Table自動設定ならば/48よりも広いアドレス空間でも有効
 - そのメリットも、FC00::/8 (centrally-managed Unique Local Address) のRegistry割当が始まればなくなる可能性大

Default Gateway Selection

- Router Preference
 - ルータ側 = 全*BSD対応済
 - 端末側 = 一部BSD端末で使用可能
 - FreeBSD: 6.1 ~
 - NetBSD: -current (Jan 2006)
 - OpenBSD: (KAME-SNAPのみ)
- More-Specific Route
 - ルータ側 = 全*BSD対応済
 - 端末側 = 未実装

- なぜ端末側でMore Specific Routeが未実装か?
 - kernel内実装が困難
 - 経路制御プロトコルをkernel内で実装するのとほぼ等価
 - 端末で「受信のみRIPng」を動かすほうが、素直かつきめ細かい制御ができるのでは?
 - 素直=これなら、*BSD全て対応済み
 - ■きめ細かい制御=経路制御計算を踏まえた経路広告

到達性が無いIPv6アドレス取得

- 基本的にはアプリケーション依存
 - OSはアプリケーションにエラーを返す
 - host unreachable, net unreachable, ...
 - あとはアプリケーションがそのエラー値を見て賢く 振舞うか次第
- アプリケーションではエラー処理はちゃんと実 装しましょう
 - IPv4でも同じことは起こる

- *BSDではユーザが意図的に有効にしない 限り、設定されない
 - 6to4
 - ISATAP (KAME)
 - TSP (freenet6)
 - L2TP (I2tpd)
- そのため、指摘されたような問題は発生しない

マルチキャストとPersonal Firewall

■現状

■「マルチキャストだったらデフォルト廃棄」という Personal Firewall実装もあるが、これは非常に迷惑

■提案

- こんなStateful inspectionが欲しい
 - MLD joinしたら、そのグループ宛のパケットだけ通す
 - その他のグループ宛のは廃棄

IPsec & multicast

- 事前共有鍵による鍵交換は動ぐ
- 動的鍵生成による鍵交換は未対応
 - IPv4/v6にかかわらない問題