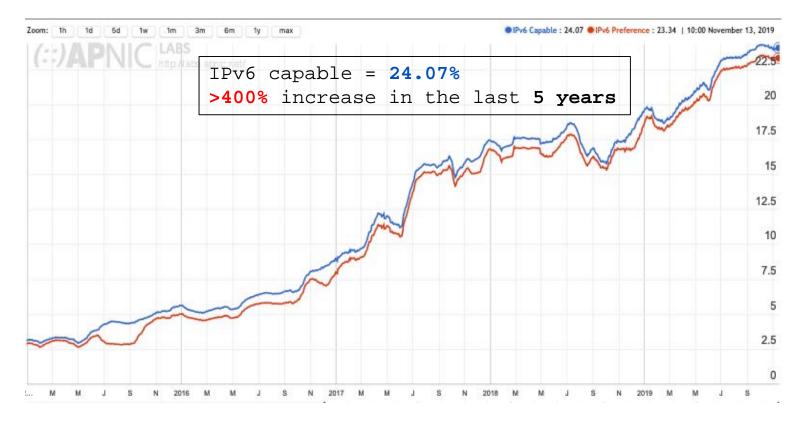
IPv6 Deployment Update (Where are we now?)

25 Nov 2019 IPv6 Summit, Tokyo

Tashi Phuntsho (tashi@apnic.net) Senior Network Analyst/Technical Trainer


APNIC

IPv6 Measurement

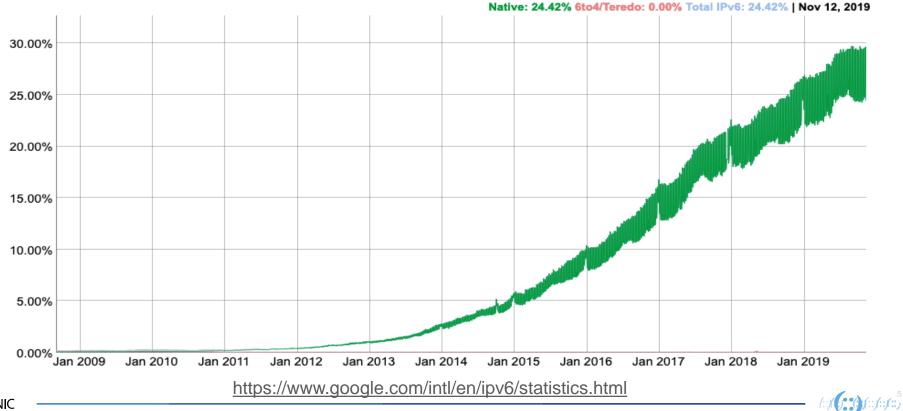
- Uses scripted online advertisement
 - Over **12M** measurements/day!!
- The ad-script fetches three URLs
 - IPv6 only URL, Dual-stack URL, IPv4 only URL
- If the device can fetch:
 - IPv6 URLs (native/dual-stack) over IPv6, deemed IPv6 capable
 - dual-stack URL over IPv6, deemed to prefer IPv6
 - RFC8305 (Happy Eyeballs) bias?

IPv6 end user Readiness

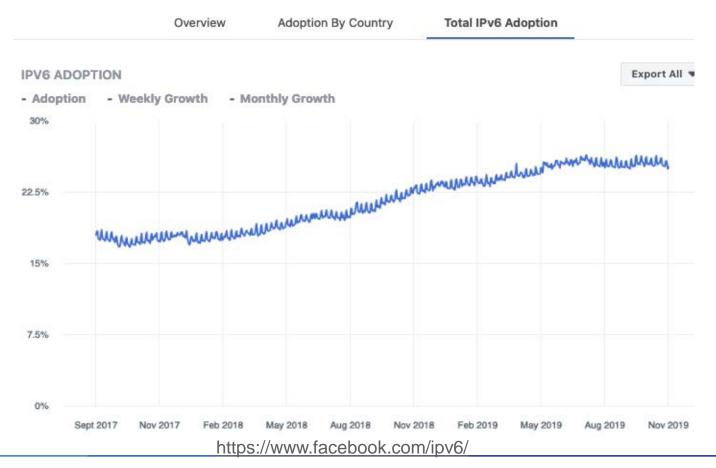
https://stats.labs.apnic.net/ipv6/

IPv6 Table - World

Economy	IPv6 capable (%)	Economy	IPv6 capable (%)	Economy	IPv6 capable (%)
India	63.79	Finland	32.93	Estonia	24.94
Belgium	57.74	Portugal	32.28	New Zealand	23.37
United States	56.74	Uruguay	32.10	Australia	23.27
Taiwan	45.29	United Kingdom	31.82	Trinidad &	22.45
Malaysia	45.07	Brazil	31.45	Tobago	22.70
Greece	44.17	Mexico	30.87	Netherlands	21.22
Germany	40.96	Norway	29.64	Ireland	20.62
France	38.21	Thailand	28.74	Peru	19.83
Vietnam	38.14	Canada	26.10	South Korea	16.09
Luxembourg	36.45	Sri Lanka	25.36	Romania	15.82
Japan	35.52	Hungary	25.20	China	15.32
Switzerland	33.89	UAE	24.95	Ecuador	15.29


https://stats.labs.apnic.net/ipv6/ (15 Nov 2019)

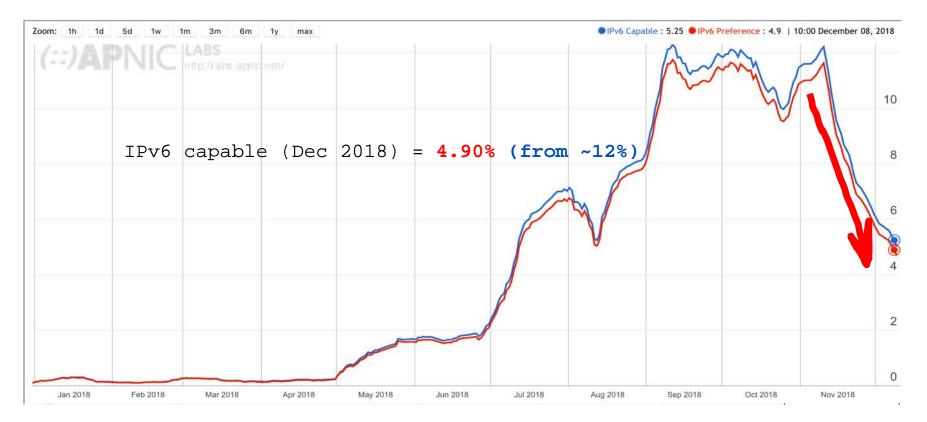
IPv6 in Action - Google


IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

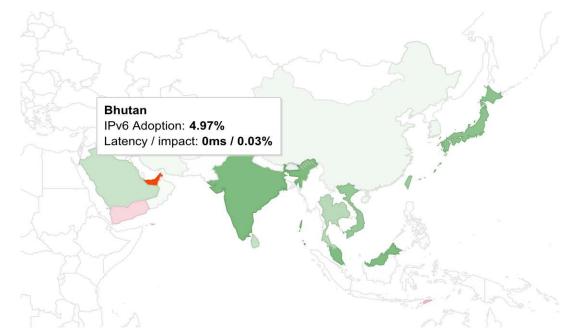
APNIC

IPv6 in Action - Facebook



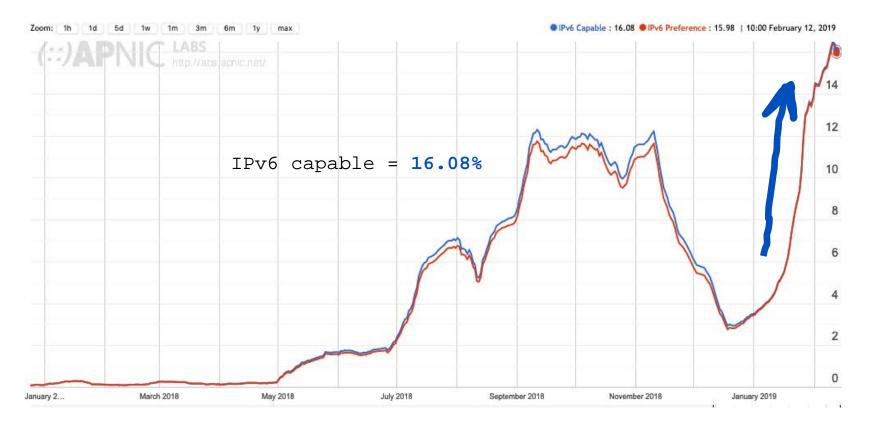
What about Asia-Pacific?

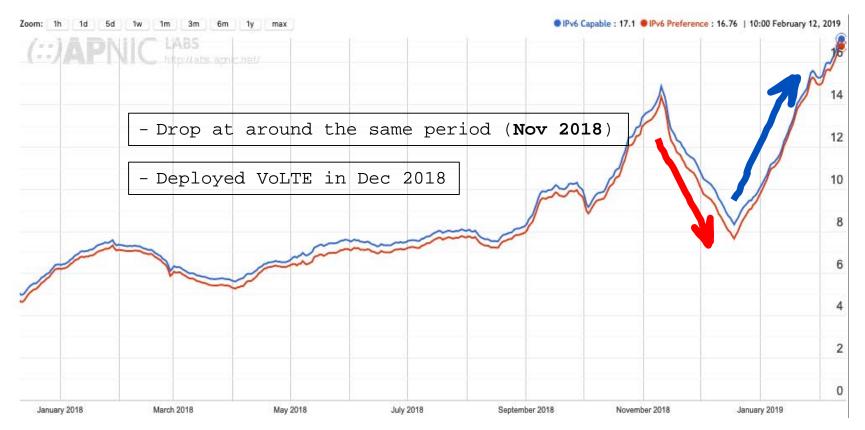
Economy	IPv6 capable (%)
India	63.81
Taiwan	45.23
Malaysia	45.11
Vietnam	38.20
Japan	35.54
Thailand	28.75
Sri Lanka	25.23
New Zealand	23.38
Australia	23.29
South Korea	16.08
Singapore	13.51
Myanmar	8.78
Bhutan	7.57



Something Interesting - BT

Google's view - BT


Per-Country IPv6 adoption


https://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption

After the fix - BT

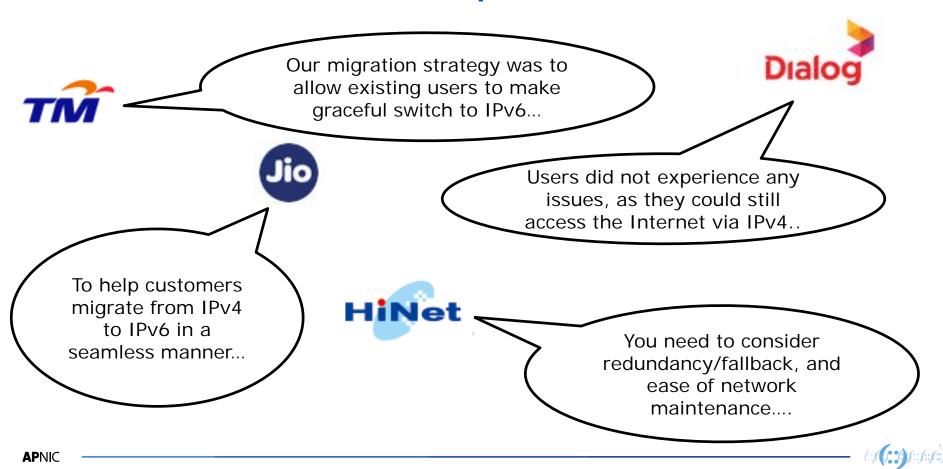
Coincidence - LK?

:)(() ()):

(::(::)

IPv6 - Who is in control?

- The true driver for IPv6 adoption Mobile Internet!
- However, born and raised on NAT!
 - Still heavily based on CG-NAT



IPv6 in Action: Mobile Networks

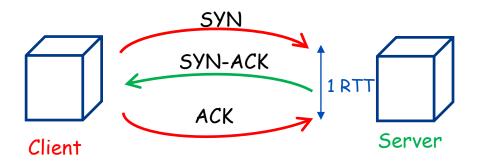
Carrier	Economy	Deployment
Verizon Wireless	USA	Dual-stack (2011)
T-Mobile	USA	464XLAT (2012)
Telekom Malaysia	Malaysia	Dual-stack (2013)
SK Telecom	Korea	464XLAT (2014)
Telstra	Australia	464XLAT (2016)
Reliance Jio	India	Dual-stack (2016)
Dialog Axiata	Sri Lanka	Dual-stack (2016)
AIS	Thailand	Dual-stack (2017)
Bhutan Telecom	Bhutan	Dual-stack (2018)
Chungwa Telecom	Taiwan	Dual-stack (2018)

Dual-stack preference?

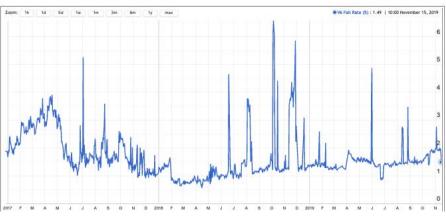
IPv6 - Mobile Devices

- 464XLAT:
 - Android (4.3 Jelly Bean)
 - Windows Phone (8.1+)
- IPv6-only:
 - iOS
 - since iOS 9 (supported on WiFi for a long time)
 - since June 2016, apps in App Store must support IPv6 <u>https://developer.apple.com/suppo</u> <u>rt/ipv6/</u>

- DHCPv6:
 - Windows
 - -iOS
- Dual-stack:
 - KaiOS
 - Jio/Nokia 8110 feature handsets
 - iOS
 - reports for dual-stack since 11.3 (through carrier update)

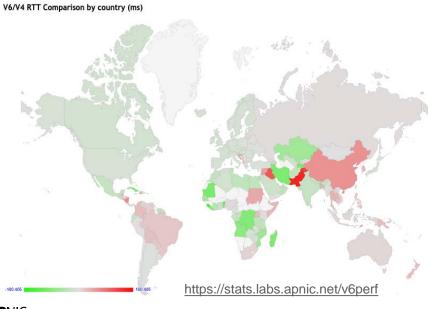


IPv6 Performance - Analysis


- We look at TCP (3-way) handshake
 - A received SYN with no subsequent ACK is interpreted as a failed connection attempt
 - The time between the receipt of the SYN and the subsequent
 ACK at the server is interpreted as the RTT (*not implicit RTT*)

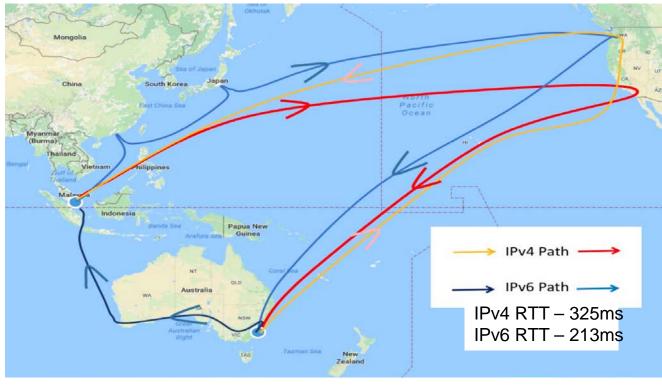
IPv6 Performance

- Is IPv6 as reliable (robust) as IPv4?
 - Do all TCP connection attempts succeed?
 - Failure ~ no ACK for a received SYN
- Global IPv6 failure rate
 1.4% ☺
 - End point filters/firewalls?
 - Not allowing inbound IPv6 or
 - ICMPv6 (PTB) filtered? PMTUD failure?
 - End points on unreachable IPv6¹ address?



Average V6 Connection Failure Rate for World (XA)

IPv6 Performance


- Is IPv6 as fast as IPv4?
 - Comparison of RTT
 - time since SYN and subsequent ACK

- IPv6 appears faster
 - Africa, Europe, and the Americas
 - CG-NAT/NAT boxes?
- IPv4 seems faster
 - Asia & Oceania
 - Different routing paths for IPv4 and IPv6?

IPv6 Performance & Routing Path

https://labs.apnic.net/?p=850

Closer to home – Routing Path

tashi-2.local (0.0.0.0)			F	ri Nov	/ 22 17	:45:39	2019	cashi-2.local (::) Fri Nov 22 17:45:39	2019
Reys: Help Display mode Restart statis	stics	0rder	of fie	lds	quit			eys: Help Display mode Restart statistics Order of fields quit	
	Packe	ts		F	Pings			Packets Pings	
Host	Loss%	Snt	Last	Avg	Best	Wrst	StDev	Host Loss% Snt Last Avg Best Wrst S	tDev
1. 192.168.0.1	72.2%	19	2.0	1.6		2.0	0.0	1. guest.nic.ad.jp 56.2% 17 1.4 1.5 1.1 2.1	0.0
niccrswa-vlan66.nic.ad.jp	61.1%	19	4.2		2.0			2. 2001:dc2:1000:4fff::1 68.8% 17 2.8 2.9 2.1 4.6	0.7
nicfwc-vlan7.nic.ad.jp	72.2%	18	3.2	3.4	2.1	4.6	0.7	3. 2001:dc2:1000:4001::1 64.7% 17 4.4 6.2 2.5 16.2	5.0
dixcrswe-vlan6.nic.ad.jp	58.8%	18	3.1	10.5	2.8	42.3	14.2	4. dix-ied.nic.ad.jp 68.8% 17 3.4 3.2 2.8 3.4	0.0
5. dix-iee.nic.ad.jp	72.2%	18			2.3	3.0	0.0	5. 2001:dc2:1000::4 58.8% 17 3.2 4.8 2.9 14.8	4.4
as2518-2.ix.jpix.ad.jp	76.5%	18	3.1	2.9		3.1	0.0	6. gigabitethernet2-8.core1.tyo1.he.net 75.0% 17 3.2 4.1 3.0 6.7	1.6
7. 133.208.191.144	70.6%	18		4.5		9.3		7. 100ge10-2.core1.hkg1.he.net 75.0% 17 59.1 53.6 51.3 59.1	3.7
8. vocus1-10g.hkix.net	66.7%	18	57.1	56.8	56.6	57.1	0.0	8. vocus.gigabitethernet4-9.core1.hkg1.he 70.6% 17 53.0 53.2 53.0 53.4	0.0
9. Te-0-1-0-2-1.cor02.syd04.nsw.VOCUS.net	64.7%	18	230.4	233.2	230.0	248.0	7.2	9. Te-0-0-0-2-8.cor01.syd11.nsw.VOCUS.net 81.2% 17 182.4 182.4 182.0 182.7	0.0
10. BE-1.cor01.syd11.nsw.VOCUS.net.au	52.9%	18	232.8	233.0	232.8	233.7	0.0	LO. BE-1.cor02.syd04.nsw.VOCUS.net.au 58.8% 17 182.4 182.4 181.9 182.6	0.0
11. ???								11. ???	
12. ???								12. ???	
13. ???								L3. cor01.bne03.qld.vocus.net.au 50.0% 17 182.2 182.8 181.9 186.1	1.3
14. ten-1-2-0.bdr01.bne03.qld.VOCUS.net.au	58.8%	18	210.0	210.2	209.8	210.7	0.0	14. 2402:7800:10:2::151 56.2% 16 182.4 194.8 182.0 204.7	11.9
15. asn131107.bdr01.bne03.qld.vocus.net.au	70.6%	18	210.7	210.6	210.4	210.8	0.0	15. 2402:7800:10:2::152 56.2% 16 204.3 204.4 203.9 204.9	0.0
16. 202.125.96.226	77.8%	18	210.8	210.7	210.2	211.0	0.0	16. 2001:df2:ee00:1::2 53.3% 16 182.3 182.5 182.0 183.0	0.0
17. wiki.apnictraining.net	82.4%	18	232.7	232.9	232.7	233.2	0.0	17. wiki.apnictraining.net 60.0% 16 181.8 192.6 181.6 244.8	25.6

Where are we now?

- Global IPv6 end-user readiness ~ 24%
- IPv6 deployments on the rise (across diverse economy profiles)
 - 63% of network operators in Asia-Pacific have IPv6 resources
- Observed trend of dual-stack in recent deployments

"IPv6 has emerged from the 'Innovators' and 'Early Adoption' stages of deployment, and is now in the 'Early Majority phase"

- ISOC State of IPv6 Deployment (2018)

How do we help?

- Track, measure, report
 - End-user readiness,
 - Performance analysis
- Operational trainings
 - Direct country assistance (Gov)
 - Standalone workshops
 - NOGs

APNIC

- Technical Assistance
 - Remote or F2F

Deploy IPv6

Deploying IPv6 can be a challenge but many organizations around the world have made the transition successfully. Here's some of the elements you'll need to consider for your organization's deployment of IPv6.

どもありがとうございます!

